2021年高考数学浙江18 |
|
2022-05-03 08:26:26 |
|
18.(14分)设函数$f(x)=\sin x+\cos x(x\in R)$. (Ⅰ)求函数$y=[f(x+\dfrac{\pi }{2})]^{2}$的最小正周期; (Ⅱ)求函数$y=f(x)f(x-\dfrac{\pi }{4})$在$[0$,$\dfrac{\pi }{2}]$上的最大值. 分析:(Ⅰ)由$y=[f(x+\dfrac{\pi }{2})]^{2}$,可得$y=1-\sin 2x$,然后利用周期公式求出周期; (Ⅱ)$y=f(x)f(x-\dfrac{\pi }{4})=\sin (2x-\dfrac{\pi }{4})+\dfrac{\sqrt{2}}{2}$,由$x\in [0$,$\dfrac{\pi }{2}]$,得到$12x-\dfrac{\pi }{4}$的取值范围,再利用整体法求出$y=f(x)f(x-\dfrac{\pi }{4})$的最大值. 解:函数$f(x)=\sin x+\cos x=\sqrt{2}\sin (x+\dfrac{\pi }{4})$, (Ⅰ)函数$y=[f(x+\dfrac{\pi }{2})]^{2}=[\sqrt{2}\sin (x+\dfrac{\pi }{2}+\dfrac{\pi }{4})]^{2}=2\cos ^{2}(x+\dfrac{\pi }{4})$ $=1+\cos [2(x+\dfrac{\pi }{4})]=1+\cos (2x+\dfrac{\pi }{2})=1-\sin 2x$, 则最小正周期为$T=\dfrac{2\pi }{2}=\pi$; (Ⅱ)函数$y=f(x)f(x-\dfrac{\pi }{4})=\sqrt{2}\sin (x+\dfrac{\pi }{4})\cdot \sqrt{2}\sin (x-\dfrac{\pi }{4}+\dfrac{\pi }{4})$ $=(\sqrt{2}(\sin x+\cos x)\sin x=\sqrt{2}(si{n}^{2}x+\sin x\cos x)$ $=\sqrt{2}(\dfrac{1-\cos 2x}{2}+\dfrac{1}{2}\sin 2x)=\sin (2x-\dfrac{\pi }{4})+\dfrac{\sqrt{2}}{2}$, 因为$x\in [0,\dfrac{\pi }{2}]$,所以$2x-\dfrac{\pi }{4}\in [-\dfrac{\pi }{4},\dfrac{3\pi }{4}]$, 所以当$2x-\dfrac{\pi }{4}=\dfrac{\pi }{2}$,即$x=\dfrac{3\pi }{8}$时,$f(x)_{max}=1+\dfrac{\sqrt{2}}{2}$. 点评:本题考查了三角函数的图像性质,涉及求解函数的周期以及最值问题,考查了运算能力,属于基础题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021zj/2022-05-03/33350.html |