2021年高考数学浙江10 |
|
2022-05-03 08:24:59 |
|
10.(4分)已知数列{an}满足a1=1,an+1=an1+√an(n∈N∗).记数列{an}的前n项和为Sn,则( ) A.32<S100<3 B.3<S100<4 C.4<S100<92 D.92<S100<5 分析:由题意首先整理所给的递推关系式,得到数列的通项的范围,然后结合求和公式裂项即可确定前100项和的范围. 1√an−1√a1=12(n−1)⇒1√an=1+n−12=n+12⇒an=4(n+1)2 解:因为a1=1,an+1=an1+√an,所以an>0,a2=12,所以S100>a1+a2=32, 1an+1=1an+1√an=(1√an+12)2−14<(1√an+12)2, ∴1√an+1<1√an+12,故1√an−1√an−1<12,⋯,1√a2−1√a1<12, 由累加法可得当n⩾2 时, 1√an??1√a1?<12(n?1)⇒1√an?<1+n?12=n+12⇒an>4(n+1)2, 又因为当n=1 时,an=4(n+1)2 也成立,所以an⩾4(n+1)2(n∈N∗), 所以an+1=an1+√an⩽an1+2n+1=n+1n+3an, ∴an+1an=n+1n+3,故anan−1⩽nn+2,an−1an−2=n−1n+1,⋯,a2a1=24, 由累乘法可得当n⩾2 时,an=ana1=nn+2×n−1n+1×n−2n×⋯×35×24=6(n+2)(n+1)=6(1n+1−1n+2), 所以S100=1+6(13−14+14−15+15−16+⋯+1101−1102)<1+6(13−1102)<1+2=3. 故选:A. 点评:本题主要考查数列的递推关系式及其应用,数列求和与放缩的技巧等知识,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021zj/2022-05-03/33342.html |