6.(4分)如图,已知正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$,$M$,$N$分别是$A_{1}D$,$D_{1}B$的中点,则( )
A.直线$A_{1}D$与直线$D_{1}B$垂直,直线$MN//$平面$ABCD$ B.直线$A_{1}D$与直线$D_{1}B$平行,直线$MN\bot$平面$BDD_{1}B_{1}$ C.直线$A_{1}D$与直线$D_{1}B$相交,直线$MN//$平面$ABCD$ D.直线$A_{1}D$与直线$D_{1}B$异面,直线$MN\bot$平面$BDD_{1}B_{1}$ 分析:通过证明直线$A_{1}D\bot$平面$ABD_{1}$,$MN$是$\Delta ABD_{1}$的中位线,可判断$A$;根据异面直线的判断可知$A_{1}D$与直线$D_{1}B$是异面直线,可判断$B$;根据异面直线的判断可知直线$A_{1}D$与直线$D_{1}B$是异面直线,可判断$C$;由$MN//AB$,可知$MN$不与平面$BDD_{1}B_{1}$垂直,可判断$D$. 解:连接$AD_{1}$,如图:
由正方体可知$A_{1}D\bot AD_{1}$,$A_{1}D\bot AB$,$\therefore A_{1}D\bot$平面$ABD_{1}$, $\therefore A_{1}D\bot D_{1}B$,由题意知$MN$为△$D_{1}AB$的中位线,$\therefore MN//AB$, 又$\because AB\subset$平面$ABCD$,$MN\not\subset$平面$ABCD$,$\therefore MN//$平面$ABCD$.$\therefore A$对; 由正方体可知$A_{1}D$与平面$BDD_{1}$相交于点$D$,$D_{1}B\subset$平面$BDD_{1}$,$D\notin D_{1}B$, $\therefore$直线$A_{1}D$与直线$D_{1}B$是异面直线,$\therefore B$、$C$错; $\because MN//AB$,$AB$不与平面$BDD_{1}B_{1}$垂直,$\therefore MN$不与平面$BDD_{1}B_{1}$垂直,$\therefore D$错. 故选:$A$.
点评:本题考查了线面平行的判定定理和线面垂直的判定定理与性质,考查了逻辑推理核心素养,属于中档题.
|