19.(15分)已知数列$\{a_{n}\}$是公差为2的等差数列,其前8项的和为64.数列$\{b_{n}\}$是公比大于0的等比数列,$b_{1}=4$,$b_{3}-b_{2}=48$. (1)求数列$\{a_{n}\}$和$\{b_{n}\}$的通项公式; (2)记$c_{n}=b_{2n}+\dfrac{1}{{b}_{n}}$,$n\in N^*$. $(i)$证明:$\{c_{n}^{2}-c_{2n}\}$是等比数列; $(ii)$证明:$\sum _{k=1}^{n}\sqrt{\dfrac{{a}_{k}{a}_{k+1}}{{c}_{k}^{2}-{c}_{2k}}}<2\sqrt{2}(n\in N^*)$. 分析:(1)由等差数列的求和公式,解方程可得首项,进而得到$a_{n}$;由等比数列的通项公式,解方程可得公比,进而得到$b_{n}$; (2)$(i)$利用已知数列的通项公式,表示出$c_{n}$,然后利用等比数列的定义证明即可; $(ii)$设${p}_{n}=\sqrt{\dfrac{{a}_{n}{a}_{n+1}}{{{c}_{n}}^{2}-{c}_{2n}}}=\sqrt{\dfrac{(2n-1)(2n+1)}{2\cdot {4}^{n}}}$,然后利用放缩法得到${p}_{n}<\sqrt{2}\cdot \dfrac{n}{{2}^{n}}$,再利用错位相减法求解数列$\{\dfrac{n}{{2}^{n}}\}$的和,即可判断以$\sum\limits_{k=1}^{n}{q}_{k}=2-\dfrac{n+2}{{2}^{n}}<2$,从而证明不等式. 证明:(1)由数列$\{a_{n}\}$是公差$d$为2的等差数列,其前8项的和为64, 可得$8a_{1}+\dfrac{1}{2}\times 8\times 7d=64$,解得$a_{1}=1$, 所以$a_{n}=1+2(n-1)=2n-1$,$n\in N$; 由数列$\{b_{n}\}$是公比$q$大于0的等比数列,$b_{1}=4$,$b_{3}-b_{2}=48$, 可得$4q^{2}-4q=48$,解得$q=4(-3$舍去), 所以$b_{n}=4^{n}$,$n\in N$; (2)$(i)$证明:因为$a_{n}=2n-1$,$b_{n}=4^{n}$, 所以$c_{n}=b_{2n}+\dfrac{1}{{b}_{n}}=4^{2n}+\dfrac{1}{{4}^{n}}$, 则$c_{n}^{2}-c_{2n}=(4^{2n}+\dfrac{1}{{4}^{n}})^{2}-(4^{4n}+\dfrac{1}{{4}^{2n}})={4}^{2n}+2\cdot {4}^{n}+\dfrac{1}{{4}^{2n}}-{4}^{4n}-\dfrac{1}{{4}^{2n}}=2\cdot 4^{n}$, 所以$\dfrac{{{c}_{n+1}}^{2}-{c}_{2n+2}}{{{c}_{n}}^{2}-{c}_{2n}}=\dfrac{2\cdot {4}^{n+1}}{2\cdot {4}^{n}}=4$, 又${{c}_{1}}^{2}-{c}_{2}=({4}^{2}+\dfrac{1}{4})^{2}-({4}^{4}+\dfrac{1}{{4}^{2}})=8$, 所以数列$\{c_{n}^{2}-c_{2n}\}$是以8为首项,4为公比的等比数列; $(ii)$证明:设${p}_{n}=\sqrt{\dfrac{{a}_{n}{a}_{n+1}}{{{c}_{n}}^{2}-{c}_{2n}}}=\sqrt{\dfrac{(2n-1)(2n+1)}{2\cdot {4}^{n}}}=\sqrt{\dfrac{4{n}^{2}-1}{2\cdot {4}^{n}}}<\sqrt{\dfrac{4{n}^{2}}{2\cdot {4}^{n}}}=\sqrt{2}\cdot \dfrac{n}{{2}^{n}}$, 考虑${q}_{n}=\dfrac{n}{{2}^{n}}$,则$p_{n}<\sqrt{2}q_{n}$, 所以$\sum\limits_{k=1}^{n}q_{k}=\dfrac{1}{2}+\dfrac{2}{{2}^{2}}+...+\dfrac{n}{{2}^{n}}$, 则$\dfrac{1}{2}\sum\limits_{k=1}^{n}{q}_{k}=\dfrac{1}{{2}^{2}}+\dfrac{2}{{2}^{3}}+\cdot \cdot \cdot +\dfrac{n}{{2}^{n+1}}$, 两式相减可得,$\dfrac{1}{2}\sum\limits_{k=1}^{n}{q}_{k}=\dfrac{1}{2}+\dfrac{1}{{2}^{2}}+\cdot \cdot \cdot +\dfrac{1}{{2}^{n}}-\dfrac{n}{{2}^{n+1}}=\dfrac{\dfrac{1}{2}\times (1-\dfrac{1}{{2}^{n}})}{1-\dfrac{1}{2}}-\dfrac{n}{{2}^{n+1}}=1-\dfrac{n+2}{{2}^{n+1}}$, 所以$\sum\limits_{k=1}^{n}{q}_{k}=2-\dfrac{n+2}{{2}^{n}}<2$, 则$\sum\limits_{k=1}^{n}\sqrt{\dfrac{{a}_{k}{a}_{k+1}}{{{c}_{k}}^{2}-{c}_{2k}}}<\sqrt{2}\sum\limits_{k=1}^{n}{q}_{k}<2\sqrt{2}$, 故$\sum\limits_{k=1}^{n}\sqrt{\dfrac{{a}_{k}{a}_{k+1}}{{{c}_{k}}^{2}-{c}_{2k}}}<2\sqrt{2}$. 点评:本题考查等差数列和等比数列的通项公式和求和公式,以及数列的错位相减法求和、不等式的证明,考查方程思想和运算能力、推理能力,属于中档题.
|