2021年高考数学天津9 |
|
2022-05-03 08:24:51 |
|
9.(5分)设$a\in R$,函数$f(x)=\left\{\begin{array}x\cos (2\pi x-2\pi a)&x<a\\ {x}^{2}-2(a+1)x+{a}^{2}+5&x\geqslant a\end{array}\right.$,若函数$f(x)$在区间$(0,+\infty )$内恰有6个零点,则$a$的取值范围是( ) A.$(2$,$\dfrac{9}{4}]\bigcup (\dfrac{5}{2}$,$\dfrac{11}{4}]$ B.$(\dfrac{7}{4}$,$2]\bigcup (\dfrac{5}{2}$,$\dfrac{11}{4}]$ C.$(2$,$\dfrac{9}{4}]\bigcup{[}\dfrac{11}{4}$,$3)$ D.$(\dfrac{7}{4}$,$2)\bigcup{[}\dfrac{11}{4}$,$3)$ 分析:分$x<a$,$x\geqslant a$两种情况讨论,当$x<a$时,且$\dfrac{7}{4}<a\leqslant \dfrac{9}{4}$时,$f(x)$有4个零点,$\dfrac{9}{4}<x\leqslant \dfrac{11}{4}$,$f(x)$有5个零点,$\dfrac{11}{4}<x\leqslant \dfrac{13}{4}$,$f(x)$有6个零点,当$x>a$时,即$2<a\leqslant \dfrac{5}{2}$,$f(x)$有两个零点,当$-2a+5<0$时,即$a>\dfrac{5}{2}$,$f(x)$有1个零点,当$a=2$时,$f(x)$有一个零点,综合两种情况,即可求解. 解:$\because f(x)$在区间$(0,+\infty )$内恰有6个零点 又$\because$二次函数最多有两个零点, $\therefore f(x)=\cos (2\pi x-2\pi a)$至少有四个根, $\because f(x)=\cos (2\pi x-2\pi a)=\cos 2\pi (x-a)$, $\therefore$令$f(x)=0$,即$2\pi (x-a)=\dfrac{\pi }{2}+k\pi$$k\in Z$, $\therefore$$x=\dfrac{k}{2}+\dfrac{1}{4}+a$, 又$\because x\in (0,+\infty )$, $\therefore$$0<\dfrac{k}{2}+\dfrac{1}{4}+a<a$,即$-2a-\dfrac{1}{2}<k<-\dfrac{1}{2}$, ①当$x<a$时,$-5\leqslant -2a-\dfrac{1}{2}\leqslant -4$,$f(x)$有4个零点,即$\dfrac{7}{4}<a\leqslant \dfrac{9}{4}$, $-6\leqslant -2a-\dfrac{1}{2}\leqslant -5$,$f(x)$有5个零点,即$\dfrac{9}{4}<x\leqslant \dfrac{11}{4}$, $-7\leqslant -2a-\dfrac{1}{2}\leqslant -6$,$f(x)$有6个零点,即$\dfrac{11}{4}<x\leqslant \dfrac{13}{4}$, ②当$x\geqslant a$时,$f(x)=x^{2}-2(a+1)x+a^{2}+5$, $\therefore$△$=b^{2}-4ac=4(a+1)^{2}-4(a^{2}+5)=8a-16=0$,解得$a=2$, 当$a<2$时,△$<0$,$f(x)$无零点, 当$a=2$时,△$=0$,$f(x)$有1个零点, 当$a>2$时,$f$(a)$=a^{2}-2a(a+1)+a^{2}+5=-2a+5$, $\because f(x)$的对称轴$x=a+1$,即$f$(a)在对称轴的左边, $\therefore$当$-2a+5\geqslant 0$时,即$2<a\leqslant \dfrac{5}{2}$,$f(x)$有两个零点, 当$-2a+5<0$时,即$a>\dfrac{5}{2}$,$f(x)$有1个零点, 综合①②可得,若函数$f(x)$在区间$(0,+\infty )$内恰有6个零点,则需满足: $\left\{\begin{array}{l}{\dfrac{7}{4}<a\leqslant \dfrac{9}{4}}\\ {2<a\leqslant \dfrac{5}{2}}\end{array}\right.$或$\left\{ \begin{array}{*{35}{l}} \dfrac{9}{4}<a\dfrac{11}{4} \\ a>\dfrac{5}{2}a=2 \\ \end{array} \right.$或$\left\{\begin{array}{l}{\dfrac{11}{4}<a\leqslant \dfrac{13}{4}}\\ {a<2}\end{array}\right.$, 解得$a\in (2$,$\dfrac{9}{4}]\bigcup (\dfrac{5}{2}$,$\dfrac{11}{4}]$. 故选:$A$. 点评:本题考查了余弦函数和二次函数,需要学生掌握分类讨论的思想,且本题综合性强,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021tj/2022-05-03/33321.html |