Loading [MathJax]/jax/element/mml/optable/MathOperators.js
91学 首页 > 数学 > 高考题 > 2021 > 2021年天津 > 正文 返回 打印

2021年高考数学天津9

  2022-05-03 08:24:51  

9.(5分)设aR,函数f(x)={cos(2πx2πa)x<ax22(a+1)x+a2+5xa,若函数f(x)在区间(0,+)内恰有6个零点,则a的取值范围是(  )
A.(294](52114]              B.(742](52114]              
C.(294][1143)              D.(742)[1143)
分析:分x<axa两种情况讨论,当x<a时,且74<a94时,f(x)有4个零点,94<x114f(x)有5个零点,114<x134f(x)有6个零点,当x>a时,即2<a52f(x)有两个零点,当2a+5<0时,即a>52f(x)有1个零点,当a=2时,f(x)有一个零点,综合两种情况,即可求解.
解:在区间(0,+\infty )内恰有6个零点
\because二次函数最多有两个零点,
\therefore f(x)=\cos (2\pi x-2\pi a)至少有四个根,
\because f(x)=\cos (2\pi x-2\pi a)=\cos 2\pi (x-a)
\thereforef(x)=0,即2\pi (x-a)=\dfrac{\pi }{2}+k\pik\in Z
\thereforex=\dfrac{k}{2}+\dfrac{1}{4}+a
\because x\in (0,+\infty )
\therefore0<\dfrac{k}{2}+\dfrac{1}{4}+a<a,即-2a-\dfrac{1}{2}<k<-\dfrac{1}{2}
①当x<a时,-5\leqslant -2a-\dfrac{1}{2}\leqslant -4f(x)有4个零点,即\dfrac{7}{4}<a\leqslant \dfrac{9}{4}
-6\leqslant -2a-\dfrac{1}{2}\leqslant -5f(x)有5个零点,即\dfrac{9}{4}<x\leqslant \dfrac{11}{4}
-7\leqslant -2a-\dfrac{1}{2}\leqslant -6f(x)有6个零点,即\dfrac{11}{4}<x\leqslant \dfrac{13}{4}
②当x\geqslant a时,f(x)=x^{2}-2(a+1)x+a^{2}+5
\therefore=b^{2}-4ac=4(a+1)^{2}-4(a^{2}+5)=8a-16=0,解得a=2
a<2时,△<0f(x)无零点,
a=2时,△=0f(x)有1个零点,
a>2时,f(a)=a^{2}-2a(a+1)+a^{2}+5=-2a+5
\because f(x)的对称轴x=a+1,即f(a)在对称轴的左边,
\therefore-2a+5\geqslant 0时,即2<a\leqslant \dfrac{5}{2}f(x)有两个零点,
-2a+5<0时,即a>\dfrac{5}{2}f(x)有1个零点,
综合①②可得,若函数f(x)在区间(0,+\infty )内恰有6个零点,则需满足:
\left\{\begin{array}{l}{\dfrac{7}{4}<a\leqslant \dfrac{9}{4}}\\ {2<a\leqslant \dfrac{5}{2}}\end{array}\right.\left\{ \begin{array}{*{35}{l}}    \dfrac{9}{4}<a\dfrac{11}{4}  \\    a>\dfrac{5}{2}a=2  \\ \end{array} \right.\left\{\begin{array}{l}{\dfrac{11}{4}<a\leqslant \dfrac{13}{4}}\\ {a<2}\end{array}\right.
解得a\in (2\dfrac{9}{4}]\bigcup (\dfrac{5}{2}\dfrac{11}{4}]
故选:A
点评:本题考查了余弦函数和二次函数,需要学生掌握分类讨论的思想,且本题综合性强,属于难题.

http://x.91apu.com//shuxue/gkt/2021/2021tj/2022-05-03/33321.html