2021年高考数学天津9 |
|
2022-05-03 08:24:51 |
|
9.(5分)设a∈R,函数f(x)={cos(2πx−2πa)x<ax2−2(a+1)x+a2+5x⩾a,若函数f(x)在区间(0,+∞)内恰有6个零点,则a的取值范围是( ) A.(2,94]⋃(52,114] B.(74,2]⋃(52,114] C.(2,94]⋃[114,3) D.(74,2)⋃[114,3) 分析:分x<a,x⩾a两种情况讨论,当x<a时,且74<a⩽94时,f(x)有4个零点,94<x⩽114,f(x)有5个零点,114<x⩽134,f(x)有6个零点,当x>a时,即2<a⩽52,f(x)有两个零点,当−2a+5<0时,即a>52,f(x)有1个零点,当a=2时,f(x)有一个零点,综合两种情况,即可求解. 解:∵在区间(0,+\infty )内恰有6个零点 又\because二次函数最多有两个零点, \therefore f(x)=\cos (2\pi x-2\pi a)至少有四个根, \because f(x)=\cos (2\pi x-2\pi a)=\cos 2\pi (x-a), \therefore令f(x)=0,即2\pi (x-a)=\dfrac{\pi }{2}+k\pik\in Z, \thereforex=\dfrac{k}{2}+\dfrac{1}{4}+a, 又\because x\in (0,+\infty ), \therefore0<\dfrac{k}{2}+\dfrac{1}{4}+a<a,即-2a-\dfrac{1}{2}<k<-\dfrac{1}{2}, ①当x<a时,-5\leqslant -2a-\dfrac{1}{2}\leqslant -4,f(x)有4个零点,即\dfrac{7}{4}<a\leqslant \dfrac{9}{4}, -6\leqslant -2a-\dfrac{1}{2}\leqslant -5,f(x)有5个零点,即\dfrac{9}{4}<x\leqslant \dfrac{11}{4}, -7\leqslant -2a-\dfrac{1}{2}\leqslant -6,f(x)有6个零点,即\dfrac{11}{4}<x\leqslant \dfrac{13}{4}, ②当x\geqslant a时,f(x)=x^{2}-2(a+1)x+a^{2}+5, \therefore△=b^{2}-4ac=4(a+1)^{2}-4(a^{2}+5)=8a-16=0,解得a=2, 当a<2时,△<0,f(x)无零点, 当a=2时,△=0,f(x)有1个零点, 当a>2时,f(a)=a^{2}-2a(a+1)+a^{2}+5=-2a+5, \because f(x)的对称轴x=a+1,即f(a)在对称轴的左边, \therefore当-2a+5\geqslant 0时,即2<a\leqslant \dfrac{5}{2},f(x)有两个零点, 当-2a+5<0时,即a>\dfrac{5}{2},f(x)有1个零点, 综合①②可得,若函数f(x)在区间(0,+\infty )内恰有6个零点,则需满足: \left\{\begin{array}{l}{\dfrac{7}{4}<a\leqslant \dfrac{9}{4}}\\ {2<a\leqslant \dfrac{5}{2}}\end{array}\right.或\left\{ \begin{array}{*{35}{l}} \dfrac{9}{4}<a\dfrac{11}{4} \\ a>\dfrac{5}{2}a=2 \\ \end{array} \right.或\left\{\begin{array}{l}{\dfrac{11}{4}<a\leqslant \dfrac{13}{4}}\\ {a<2}\end{array}\right., 解得a\in (2,\dfrac{9}{4}]\bigcup (\dfrac{5}{2},\dfrac{11}{4}]. 故选:A. 点评:本题考查了余弦函数和二次函数,需要学生掌握分类讨论的思想,且本题综合性强,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021tj/2022-05-03/33321.html |