21.(16分)已知$x_{1}$,$x_{2}\in R$,若对任意的$x_{2}-x_{1}\in S$,$f(x_{2})-f(x_{1})\in S$,则有定义:$f(x)$是在$S$关联的. (1)判断和证明$f(x)=2x-1$是否在$[0$,$+\infty )$关联?是否有$[0$,$1]$关联? (2)若$f(x)$是在$\{3\}$关联的,$f(x)$在$x\in [0$,$3)$时,$f(x)=x^{2}-2x$,求解不等式:$2\leqslant f(x)\leqslant 3$. (3)证明:$f(x)$是$\{1\}$关联的,且是在$[0$,$+\infty )$关联的,当且仅当“$f(x)$在$[1$,$2]$是关联的”. 分析:(1)任取$x_{1}-x_{2}\in [0$,$+\infty )$,证明$f(x_{1})-f(x_{2})\in [0$,$+\infty )$,证明$f(x)=2x-1$在$[0$,$+\infty )$关联,取$x_{1}=1$,$x_{2}=0$,证明$f(x)$在$[0$,$1]$不关联;(2)先得到$f(x+3)-f(x)=3$,再得到$x\in [0$,$3)$和$x\in [3$,$6)$的解析式,进而得到答案;(3)先证明$f(x)$在$[1$,$2]$是关联的$\Rightarrow f(x)$是在$\{1\}$关联的,且是在$[0$,$+\infty )$关联的,再证明$f(x)$在$[1$,$2]$是关联的$\Rightarrow f(x)$是在$\{1\}$关联的,且是在$[0$,$+\infty )$关联的. 解:(1)$f(x)$在$[0$,$+\infty )$关联,在$[0$,$1]$不关联, 任取$x_{1}-x_{2}\in [0$,$+\infty )$,则$f(x_{1})-f(x_{2})=2(x_{1}-x_{2})\in [0$,$+\infty )$,$\therefore f(x)$在$[0$,$+\infty )$关联; 取$x_{1}=1$,$x_{2}=0$,则$x_{1}-x_{2}=1\in [0$,$1]$, $\because f(x_{1})-f(x_{2})=2(x_{1}-x_{2})=2\notin [0$,$1]$,$\therefore f(x)$在$[0$,$1]$不关联; (2)$\because f(x)$在$\{3\}$关联,$\therefore$对于任意$x_{1}-x_{2}=3$,都有$f(x_{1})-f(x_{2})=3$, $\therefore$对任意$x$,都有$f(x+3)-f(x)=3$, 由$x\in [0$,$3)$时,$f(x)=x^{2}-2x$,得$f(x)$在$x\in [0$,$3)$的值域为$[-1$,$3)$, $\therefore f(x)$在$x\in [3$,$6)$的值域为$[2$,$6)$, $\therefore 2\leqslant f(x)\leqslant 3$仅在$x\in [0$,$3)$或$x\in [3$,$6)$上有解, $x\in [0$,$3)$时,$f(x)=x^{2}-2x$,令$2\leqslant x^{2}-2x\leqslant 3$,解得$\sqrt{3}+1\leqslant x<3$, $x\in [3$,$6)$时,$f(x)=f(x-3)+3=x^{2}-8x+18$,令$2\leqslant x^{2}-8x+18\leqslant 3$,解得$3<x\leqslant 5$, $\therefore$不等式$2\leqslant f(x)\leqslant 3$的解为$[\sqrt{3}+1$,$5]$, (3)证明:①先证明:$f(x)$是在$\{1\}$关联的,且是在$[0$,$+\infty )$关联的$\Rightarrow f(x)$在$[1$,$2]$是关联的, $\because f(x)$是在$\{1\}$关联的,$\therefore$当$x_{1}-x_{2}=1$时,$f(x_{1})-f(x_{2})=1$,即$f(x+1)-f(x)=1$, $\because f(x)$是在$[0$,$+\infty )$关联的,$\therefore$当$x_{1}-x_{2}\geqslant 0$时,$f(x_{1})-f(x_{2})\geqslant 0$, 任取$x_{1}-x_{2}\in [1$,$2]$,即$1\leqslant x_{1}-x_{2}\leqslant 2$,$\therefore x_{1}\geqslant x_{2}+1$,$x_{1}\leqslant x_{2}+2$,$\therefore f(x_{2}+1)\leqslant f(x_{1})\leqslant f(x_{2}+2)$, $\therefore f(x_{1})-f(x_{2})\geqslant f(x_{2}+1)-f(x_{2})=1$,$f(x_{1})-f(x_{2})\leqslant f(x_{2}+2)-f(x_{2})=f(x_{2}+2)-f(x_{2}+1)+f(x_{2}+1)-f(x_{2})=2$, $\therefore f(x)$在$[1$,$2]$是关联的; ②再证明:$f(x)$在$[1$,$2]$是关联的$\Rightarrow f(x)$是在$\{1\}$关联的,且是在$[0$,$+\infty )$关联的, $\because f(x)$在$[1$,$2]$是关联的,$\therefore$任取$x_{1}-x_{2}\in [1$,$2]$,都有$f(x_{1})-f(x_{2})\in [1$,$2]$成立, 即满足$1\leqslant x_{1}-x_{2}\leqslant 2$,都有$1\leqslant f(x_{1})-f(x_{2})\leqslant 2$, 下面用反证法证明$f(x+1)-f(x)=1$, 若$f(x+1)-f(x)>1$,则$f(x+2)-f(x)=f(x+2)-f(x+1)+f(x+1)-f(x)>2$,与$f(x)$在$[1$,$2]$是关联的矛盾, 若$f(x+1)-f(x)<1$,则$f(x+2)-f(x)=f(x+2)-f(x+1)+f(x+1)-f(x)<2$,与$f(x)$在$[1$,$2]$是关联的矛盾, $\therefore f(x+1)-f(x)=1$成立,即$f(x)$是在$\{1\}$关联的, 再证明$f(x)$是在$[0$,$+\infty )$关联的, 任取$x_{1}-x_{2}\in [n$,$n+1](n\in N)$,有$1\leqslant x_{1}-(n-1)-x_{2}\leqslant 2$, $\because f(x)$在$[1$,$2]$是关联的,$\therefore 1\leqslant f[x_{1}-(n-1)]-f(x_{2})\leqslant 2$, $\because f(x)$是在$\{1\}$关联的,$\therefore f(x+1)-f(x)=1$,$\therefore f(x+k)-f(x)=k$, $\therefore f[x_{1}-(n-1)]-f(x_{2})=f(x_{1})-(n-1)-f(x_{2})\in [1$,$2]$,$\therefore n\leqslant f(x_{1})-f(x_{2})\leqslant n+1$, $\therefore$对任意$n\in N$,$f(x)$在$[n$,$n+1]$是关联的,$\therefore f(x)$是在$[0$,$+\infty )$关联的; 综上所述,$f(x)$是$\{1\}$关联的,且是在$[0$,$+\infty )$关联的,当且仅当“$f(x)$在$[1$,$2]$是关联的”, 故得证. 点评:该题考查了函数求解析式,解不等式,函数恒成立的知识,对学生逻辑推理能力提出了很高的要求,属于难题.
|