17.(14分)如图,在长方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,已知$AB=BC=2$,$AA_{1}=3$. (1)若$P$是棱$A_{1}D_{1}$上的动点,求三棱锥$C-PAD$的体积; (2)求直线$AB_{1}$与平面$ACC_{1}A_{1}$的夹角大小.
分析:(1)直接由三棱锥的体积公式求解即可; (2)易知直线$AB_{1}$与平面$ACC_{1}A_{1}$所成的角为$\angle OAB_{1}$,求出其正弦值,再由反三角表示即可. 解:(1)如图,在长方体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,${{V}_{C-PAD}}=\dfrac{1}{3}{{S}_{\Delta PAD}}\cdot {{h}_{C-PAD}}=\dfrac{1}{3}\times \left( \dfrac{1}{2}\times 2\times 3 \right)\times 2=2$; (2)
连接$A_{1}C_{1}\bigcap B_{1}D_{1}=O$, $\because AB=BC$, $\therefore$四边形$A_{1}B_{1}C_{1}D_{1}$为正方形,则$OB_{1}\bot OA_{1}$, 又$AA_{1}\bot OB_{1}$,$OA_{1}\bigcap AA_{1}=A_{1}$, $\therefore OB_{1}\bot$平面$ACC_{1}A_{1}$, $\therefore$直线$AB_{1}$与平面$ACC_{1}A_{1}$所成的角为$\angle OAB_{1}$, $\therefore$$\sin \angle OA{B}_{1}=\dfrac{O{B}_{1}}{A{B}_{1}}=\dfrac{\dfrac{\sqrt{{2}^{2}+{2}^{2}}}{2}}{\sqrt{{2}^{2}+{3}^{2}}}=\dfrac{\sqrt{26}}{13}$. $\therefore$直线$AB_{1}$与平面$ACC_{1}A_{1}$所成的角为$\arcsin \dfrac{\sqrt{26}}{13}$.
点评:本题考查三棱锥体积的求法,考查线面角的求解,考查推理能力及运算能力,属于中档题.
|