2021年高考数学上海15 |
|
2022-05-03 08:25:41 |
|
15.(5分)已知$f(x)=3\sin x+2$,对任意的$x_{1}\in [0$,$\dfrac{\pi }{2}]$,都存在$x_{2}\in [0$,$\dfrac{\pi }{2}]$,使得$f(x_{1})=2f(x_{2}+\theta )+2$成立,则下列选项中,$\theta$可能的值是( ) A.$\dfrac{3\pi }{5}$ B.$\dfrac{4\pi }{5}$ C.$\dfrac{6\pi }{5}$ D.$\dfrac{7\pi }{5}$ 分析:由题意可知,$x_{1}\in [0$,$\dfrac{\pi }{2}]$,即$\sin x_{1}\in [0$,$1]$,可得$f(x_{1})\in [2$,$5]$,将存在任意的$x_{1}\in [0$,$\dfrac{\pi }{2}]$,都存在$x_{2}\in [0$,$\dfrac{\pi }{2}]$,使得$f(x)=2f(x+\theta )+2$成立,转化为$f(x_{2}+\theta )_{min}\leqslant 0$,$f({x}_{2}+\theta )_{max}\geqslant \dfrac{3}{2}$,又由$f(x)=3\sin x+2$,可得$\sin ({x}_{2}+\theta )_{min}\leqslant -\dfrac{2}{3}$,$\sin ({x}_{2}+\theta )_{max}\geqslant -\dfrac{1}{6}$,再将选项中的值,依次代入验证,即可求解. 解:$\because x_{1}\in [0$,$\dfrac{\pi }{2}]$, $\therefore \sin x_{1}\in [0$,$1]$, $\therefore f(x_{1})\in [2$,$5]$, $\because$都存在$x_{2}\in [0$,$\dfrac{\pi }{2}]$,使得$f(x_{1})=2f(x_{2}+\theta )+2$成立, $\therefore f(x_{2}+\theta )_{min}\leqslant 0$,$f({x}_{2}+\theta )_{max}\geqslant \dfrac{3}{2}$, $\because f(x)=3\sin x+2$, $\therefore$$\sin ({x}_{2}+\theta )_{min}\leqslant -\dfrac{2}{3}$,$\sin ({x}_{2}+\theta )_{max}\geqslant -\dfrac{1}{6}$, $y=\sin x$在$x\in [\dfrac{\pi }{2},\dfrac{3\pi }{2}]$上单调递减, 当$\theta =\dfrac{3\pi }{5}$时,${x}_{2}+\theta \in [\dfrac{3\pi }{5},\dfrac{11\pi }{10}]$, $\therefore$$\sin ({x}_{2}+\theta )=\sin \dfrac{11\pi }{10}>\sin \dfrac{7\pi }{6}=-\dfrac{1}{2}$,故$A$选项错误, 当$\theta =\dfrac{4\pi }{5}$时,${x}_{2}+\theta \in [\dfrac{4\pi }{5},\dfrac{13\pi }{10}]$, $\therefore$$\sin ({x}_{2}+\theta )_{min}=\sin \dfrac{13\pi }{10}<\sin \dfrac{5\pi }{4}=-\dfrac{\sqrt{2}}{2}<-\dfrac{2}{3}$, $\sin ({x}_{2}+\theta )_{max}=\sin \dfrac{4\pi }{5}>0$,故$B$选项正确, 当$\theta =\dfrac{6\pi }{5}$时,$x_{2}+\theta \in [\dfrac{6\pi }{5},\dfrac{17\pi }{10}]$, $\sin (x_{2}+\theta )_{max}=\sin \dfrac{6\pi }{5}<\sin \dfrac{13\pi }{12}=\dfrac{\sqrt{2}-\sqrt{6}}{4}<-\dfrac{1}{6}$,故$C$选项错误, 当$\theta =\dfrac{7\pi }{5}$时,${x}_{2}+\theta \in [\dfrac{7\pi }{5},\dfrac{19\pi }{10}]$, $\sin (x_{2}+\theta )_{max}=\sin \dfrac{19\pi }{10}<\sin \dfrac{23\pi }{12}=\dfrac{\sqrt{2}-\sqrt{6}}{4}<-\dfrac{1}{6}$,故$D$选项错误. 故选:$B$. 点评:本题考查了三角函数的单调性,以及恒成立问题,需要学生有较综合的知识,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021sh/2022-05-03/33306.html |