2021年高考数学乙卷-文23 |
|
2022-05-03 08:13:21 |
|
[选修4-5:不等式选讲](10分) 23.已知函数f(x)=|x−a|+|x+3|. (1)当a=1时,求不等式f(x)⩾6的解集; (2)若f(x)>−a,求a的取值范围. 分析:(1)将a=1代入f(x)中,根据f(x)⩾6,利用零点分段法解不等式即可; (2)利用绝对值三角不等式可得f(x)⩾|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围. 解:(1)当a=1时,f(x)=|x−1|+|x+3|={?2x?2,x⩽?34,?3<x<12x+2,x⩾1, ∵,\therefore\left\{\begin{array}{l}{x\leqslant ?3}\\ {?2x?2\geqslant 6}\end{array}\right.或\left\{\begin{array}{l}{?3<x<1\;}\\ {4\geqslant 6}\end{array}\right.或\left\{\begin{array}{l}{x\geqslant 1}\\ {2x+2\geqslant 6}\end{array}\right., \therefore x\leqslant -4或x\geqslant 2, \therefore不等式的解集为(-\infty,-4]\bigcup{[}2,+\infty ). (2)f(x)=\vert x-a\vert +\vert x+3\vert \geqslant \vert x-a-x-3\vert =\vert a+3\vert, 若f(x)>-a,则\vert a+3\vert >-a, 两边平方可得a^{2}+6a+9>a^{2},解得a>-\dfrac{3}{2}, 即a的取值范围是(-\dfrac{3}{2},+\infty ). 点评:本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgyw/2022-05-03/33270.html |