2021年高考数学甲卷-文22 |
|
2022-05-03 07:53:04 |
|
[选修4-4:坐标系与参数方程](10分) 22.(10分)在直角坐标系$xOy$中,以坐标原点为极点,$x$轴正半轴为极轴建立极坐标系,曲线$C$的极坐标方程为$\rho =2\sqrt{2}\cos \theta$. (1)将$C$的极坐标方程化为直角坐标方程; (2)设点$A$的直角坐标为$(1,0)$,$M$为$C$上的动点,点$P$满足$\overrightarrow{AP}=\sqrt{2}\overrightarrow{AM}$,写出$P$的轨迹$C_{1}$的参数方程,并判断$C$与$C_{1}$是否有公共点. 分析:(1)把极坐标方程化为$\rho ^{2}=2\sqrt{2}\rho \cos \theta$,写出直角坐标方程即可; (2)设点$P$的直角坐标为$(x,y)$,$M(x_{1}$,$y_{1})$,利用$\overrightarrow{AP}=\sqrt{2}\overrightarrow{AM}$求出点$M$的坐标,代入$C$的方程化简得出点$P$的轨迹方程,再化为参数方程,计算$\vert CC_{1}\vert$的值即可判断$C$与$C_{1}$是否有公共点. 解:(1)由极坐标方程为$\rho =2\sqrt{2}\cos \theta$,得$\rho ^{2}=2\sqrt{2}\rho \cos \theta$, 化为直角坐标方程是$x^{2}+y^{2}=2\sqrt{2}x$, 即${(x-\sqrt{2})}^{2}+y^{2}=2$,表示圆心为$C(\sqrt{2}$,$0)$,半径为$\sqrt{2}$的圆. (2)设点$P$的直角坐标为$(x,y)$,$M(x_{1}$,$y_{1})$,因为$A(1,0)$, 所以$\overrightarrow{AP}=(x-1,y)$,$\overrightarrow{AM}=(x_{1}-1$,$y_{1})$, 由$\overrightarrow{AP}=\sqrt{2}\overrightarrow{AM}$, 即$\left\{\begin{array}{l}{x-1=\sqrt{2}{(x}_{1}-1)}\\ {y={\sqrt{2}y}_{1}}\end{array}\right.$, 解得$\left\{\begin{array}{l}{{x}_{1}=\dfrac{\sqrt{2}}{2}(x-1)+1}\\ {{y}_{1}=\dfrac{\sqrt{2}}{2}x}\end{array}\right.$, 所以$M(\dfrac{\sqrt{2}}{2}(x-1)+1$,$\dfrac{\sqrt{2}}{2}y)$,代入$C$的方程得${[\dfrac{\sqrt{2}}{2}(x-1)+1-\sqrt{2}]}^{2}+{(\dfrac{\sqrt{2}}{2}y)}^{2}=2$, 化简得点$P$的轨迹方程是${(x-3+\sqrt{2})}^{2}+y^{2}=4$,表示圆心为$C_{1}(3-\sqrt{2}$,$0)$,半径为2 的圆; 化为参数方程是$\left\{\begin{array}{l}{x=3-\sqrt{2}+2\cos \theta }\\ {y=2\sin \theta }\end{array}\right.$,$\theta$为参数; 计算$\vert CC_{1}\vert =\vert (3-\sqrt{2})-\sqrt{2}\vert =3-2\sqrt{2}<2-\sqrt{2}$, 所以圆$C$与圆$C_{1}$内含,没有公共点. 点评:本题考查了参数方程与极坐标的应用问题,也考查了转化思想与运算求解能力,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgjw/2022-05-03/33223.html |