2021年高考数学甲卷-文19 |
|
2022-05-03 07:52:38 |
|
19.(12分)已知直三棱柱$ABC-A_{1}B_{1}C_{1}$中,侧面$AA_{1}B_{1}B$为正方形,$AB=BC=2$,$E$,$F$分别为$AC$和$CC_{1}$的中点,$BF\bot A_{1}B_{1}$. (1)求三棱锥$F-EBC$的体积; (2)已知$D$为棱$A_{1}B_{1}$上的点,证明:$BF\bot DE$.
分析:(1)先证明$AB\bot$平面$BCC_{1}B_{1}$,即可得到$AB\bot BC$,再根据直角三角形的性质可知$CE=\sqrt{2}=BE$,最后根据三棱锥的体积公式计算即可; (2)取$BC$中点$G$,连接$EG$,$B_{1}G$,先证明$EG//AB//B_{1}D$,从而得到$E$、$G$、$B_{1}$、$D$四点共面,再由(1)及线面垂直的性质定理可得$BF\bot EG$,通过角的正切值判断出 $\angle CBF=\angle BB_{1}G$,再通过角的代换可得,$BF\bot B_{1}G$,再根据线面垂直的判定定理可得$BF\bot$平面$EGB_{1}D$,进而得证. 解:(1)在直三棱柱$ABC-A_{1}B_{1}C_{1}$中,$BB_{1}\bot A_{1}B_{1}$, 又$BF\bot A_{1}B_{1}$,$BB_{1}\bigcap BF=B$,$BB_{1}$,$BF\subset $平面$BCC_{1}B_{1}$, $\therefore A_{1}B_{1}\bot$平面$BCC_{1}B_{1}$, $\because AB//A_{1}B_{1}$, $\therefore AB\bot$平面$BCC_{1}B_{1}$, $\therefore AB\bot BC$, 又$AB=BC$,故$AC=\sqrt{{2}^{2}+{2}^{2}}=2\sqrt{2}$, $\therefore$$CE=\sqrt{2}=BE$, 而侧面$AA_{1}B_{1}B$为正方形, $\therefore$$CF=\dfrac{1}{2}C{C}_{1}=\dfrac{1}{2}AB=1$, $\therefore$$V=\dfrac{1}{3}{S}_{\Delta EBC}\cdot CF=\dfrac{1}{3}\times \dfrac{1}{2}\times \sqrt{2}\times \sqrt{2}\times 1=\dfrac{1}{3}$,即三棱锥$F-EBC$的体积为$\dfrac{1}{3}$; (2)证明:如图,取$BC$中点$G$,连接$EG$,$B_{1}G$,设$B_{1}G\bigcap BF=H$,
$\because$点$E$是$AC$的中点,点$G$时$BC$的中点, $\therefore EG//AB$, $\therefore EG//AB//B_{1}D$, $\therefore E$、$G$、$B_{1}$、$D$四点共面, 由(1)可得$AB\bot$平面$BCC_{1}B_{1}$, $\therefore EG\bot$平面$BCC_{1}B_{1}$, $\therefore BF\bot EG$, $\because$$\tan \angle CBF=\dfrac{CF}{BC}=\dfrac{1}{2},\tan \angle B{B}_{1}G=\dfrac{BG}{B{B}_{1}}=\dfrac{1}{2}$,且这两个角都是锐角, $\therefore \angle CBF=\angle BB_{1}G$, $\therefore \angle BHB_{1}=\angle BGB_{1}+\angle CBF=\angle BGB_{1}+\angle BB_{1}G=90\circ$, $\therefore BF\bot B_{1}G$, 又$EG\bigcap B_{1}G=G$,$EG$,$B_{1}G\subset$平面$EGB_{1}D$, $\therefore BF\bot$平面$EGB_{1}D$, 又$DE\subset$平面$EGB_{1}D$, $\therefore BF\bot DE$.
点评:本题主要考查三棱锥体积的求法以及线线,线面间的垂直关系,考查运算求解能力及逻辑推理能力,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgjw/2022-05-03/33220.html |