2021年高考数学甲卷-文11 |
|
2022-05-03 07:50:49 |
|
11.(5分)若$\alpha \in (0,\dfrac{\pi }{2})$,$\tan 2\alpha =\dfrac{\cos \alpha }{2-\sin \alpha }$,则$\tan \alpha =$( ) A.$\dfrac{\sqrt{15}}{15}$ B.$\dfrac{\sqrt{5}}{5}$ C.$\dfrac{\sqrt{5}}{3}$ D.$\dfrac{\sqrt{15}}{3}$ 分析:把等式左边化切为弦,再展开倍角公式,求解$\sin \alpha$,进一步求得$\cos \alpha$,再由商的关系可得$\tan \alpha$的值. 解:由$\tan 2\alpha =\dfrac{\cos \alpha }{2-\sin \alpha }$,得$\dfrac{\sin 2\alpha }{\cos 2\alpha }=\dfrac{\cos \alpha }{2-\sin \alpha }$, 即$\dfrac{2\sin \alpha \cos \alpha }{1-2si{n}^{2}\alpha }=\dfrac{\cos \alpha }{2-\sin \alpha }$, $\because \alpha \in (0,\dfrac{\pi }{2})$,$\therefore \cos \alpha \ne 0$, 则$2\sin \alpha (2-\sin \alpha )=1-2\sin ^{2}\alpha$,解得$\sin \alpha =\dfrac{1}{4}$, 则$\cos \alpha =\sqrt{1-si{n}^{2}\alpha }=\dfrac{\sqrt{15}}{4}$, $\therefore \tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{\dfrac{1}{4}}{\dfrac{\sqrt{15}}{4}}=\dfrac{\sqrt{15}}{15}$. 故选:$A$. 点评:本题考查三角函数的恒等变换与化简求值,考查倍角公式的应用,是基础题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgjw/2022-05-03/33212.html |