91学 首页 > 数学 > 高考题 > 2021 > 2021年全国甲理 > 正文 返回 打印

2021年高考数学甲卷-理12

  2022-05-02 09:00:17  

12.(5分)设函数$f(x)$的定义域为$R$,$f(x+1)$为奇函数,$f(x+2)$为偶函数,当$x\in [1$,$2]$时,$f(x)=ax^{2}+b$.若$f(0)+f$(3)$=6$,则$f(\dfrac{9}{2})=($  $)$
A.$-\dfrac{9}{4}$              B.$-\dfrac{3}{2}$              C.$\dfrac{7}{4}$              D.$\dfrac{5}{2}$
分析:由$f(x+1)$为奇函数,$f(x+2)$为偶函数,可求得$f(x)$的周期为4,由$f(x+1)$为奇函数,可得$f$(1)$=0$,结合$f(0)+f$(3)$=6$,可求得$a$,$b$的值,从而得到$x\in [1$,$2]$时,$f(x)$的解析式,再利用周期性可得$f(\dfrac{9}{2})=f(\dfrac{1}{2})=-f(\dfrac{3}{2})$,进一步求出$f(\dfrac{9}{2})$的值.
解:$\because f(x+1)$为奇函数,$\therefore f$(1)$=0$,且$f(x+1)=-f(-x+1)$,
$\because f(x+2)$偶函数,$\therefore f(x+2)=f(-x+2)$,
$\therefore f[(x+1)+1]=-f[-(x+1)+1]=-f(-x)$,即$f(x+2)=-f(-x)$,
$\therefore f(-x+2)=f(x+2)=-f(-x)$.
令$t=-x$,则$f(t+2)=-f(t)$,
$\therefore f(t+4)=-f(t+2)=f(t)$,$\therefore f(x+4)=f(x)$.
当$x\in [1$,$2]$时,$f(x)=ax^{2}+b$.
$f(0)=f(-1+1)=-f$(2)$=-4a-b$,
$f$(3)$=f(1+2)=f(-1+2)=f$(1)$=a+b$,
又$f(0)+f$(3)$=6$,$\therefore -3a=6$,解得$a=-2$,
$\because f$(1)$=a+b=0$,$\therefore b=-a=2$,
$\therefore$当$x\in [1$,$2]$时,$f(x)=-2x^{2}+2$,
$\therefore f(\dfrac{9}{2})=f(\dfrac{1}{2})=-f(\dfrac{3}{2})=-(-2\times \dfrac{9}{4}+2)=\dfrac{5}{2}$.
故选:$D$.
点评:本题主要考查函数的奇偶性与周期性,考查转化思想与运算求解能力,属于中档题.

http://x.91apu.com//shuxue/gkt/2021/2021qgjl/2022-05-02/33190.html