91学 首页 > 数学 > 高考题 > 2021 > 2021年新高考2 > 正文 返回 打印

2021年高考数学新高考Ⅱ-11

  2022-04-29 23:00:39  

11.(5分)已知直线$l:ax+by-r^{2}=0$与圆$C:x^{2}+y^{2}=r^{2}$,点$A(a,b)$,则下列说法正确的是$($  $)$
A.若点$A$在圆$C$上,则直线$l$与圆$C$相切              
B.若点$A$在圆$C$内,则直线$l$与圆$C$相离              
C.若点$A$在圆$C$外,则直线$l$与圆$C$相离              
D.若点$A$在直线$l$上,则直线$l$与圆$C$相切
分析:根据直线和圆相切、相交、相离的等价条件进行求解即可.
解:$\because$点$A$在圆$C$上,
$\therefore a^{2}+b^{2}=r^{2}$,
$\because$圆心$C(0,0)$到直线$l$的距离为$d=\dfrac{\vert 0\times a+0\times b-{r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}=\dfrac{\vert {r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}=r$,
$\therefore$直线与圆$C$相切,故$A$选项正确,
$\because$点$A$在圆$C$内,
$\therefore a^{2}+b^{2}<r^{2}$,
$\because$圆心$C(0,0)$到直线$l$的距离为$d=\dfrac{\vert 0\times a+0\times b-{r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}=\dfrac{\vert {r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}>r$,
$\therefore$直线与圆$C$相离,故$B$选项正确,
$\because$点$A$在圆$C$外,
$\therefore a^{2}+b^{2}>r^{2}$,
$\because$圆心$C(0,0)$到直线$l$的距离为$d=\dfrac{\vert 0\times a+0\times b-{r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}=\dfrac{\vert {r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}<r$,
$\therefore$直线与圆$C$相交,故$C$选项错误,
$\because$点$A$在直线$l$上,
$\therefore a^{2}+b^{2}=r^{2}$,
$\because$圆心$C(0,0)$到直线$l$的距离为$d=\dfrac{\vert 0\times a+0\times b-{r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}=\dfrac{\vert {r}^{2}\vert }{\sqrt{{a}^{2}+{b}^{2}}}=r$,
$\therefore$直线与圆$C$相切,故$D$选项正确.
故选:$ABD$.
点评:本题考查了直线与圆的位置关系,需要学生熟练掌握公式,属于基础题.

http://x.91apu.com//shuxue/gkt/2021/2021xgk2/2022-04-29/33167.html