91学 首页 > 数学 > 高考题 > 2021 > 2021年新高考1 > 正文 返回 打印

2021年高考数学新高考Ⅰ-21

  2021-06-14 22:01:49  

(12分)在平面直角坐标系$xOy$中,已知点$F_{1}(-\sqrt{17}$,$0)$,$F_{2}(\sqrt{17}$,$0)$,点$M$满足$\vert MF_{1}\vert -\vert MF_{2}\vert =2$.记$M$的轨迹为$C$.
(1)求$C$的方程;
(2)设点$T$在直线$x=\dfrac{1}{2}$上,过$T$的两条直线分别交$C$于$A$,$B$两点和$P$,$Q$两点,且$\vert TA\vert \cdot \vert TB\vert =\vert TP\vert \cdot \vert TQ\vert$,求直线$AB$的斜率与直线$PQ$的斜率之和.
分析:(1)$M$的轨迹$C$是双曲线的右支,根据题意建立关于$a$,$b$,$c$的方程组,解出即可求得$C$的方程;
(2)(法一)设出直线$AB$的参数方程,与双曲线方程联立,由参数的几何意义可求得$\vert TA\vert \cdot \vert TB\vert$,同理求得$\vert TP\vert \cdot \vert TQ\vert$,再根据$\vert TA\vert \cdot \vert TB\vert =\vert TP\vert \cdot \vert TQ\vert$,即可得出答案.
(法二)设直线$AB$方程,将其与$CD$的方程联立,求出两根之和及两根之积,再表示出$\vert AT\vert$及$\vert BT\vert$,同理设出直线$PQ$的方程,表示出$\vert PT\vert$及$\vert QT\vert$,根据$\vert TA\vert \cdot \vert TB\vert =\vert TP\vert \cdot \vert TQ\vert$,代入化简后可得出结论.
解:(1)由双曲线的定义可知,$M$的轨迹$C$是双曲线的右支,设$C$的方程为$\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1(a>0,b>0),x\geqslant 1$,
根据题意$\left\{\begin{array}{l}{c=\sqrt{17}}\\ {2a=2}\\ {{c}^{2}={a}^{2}+{b}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\ {b=4}\\ {c=\sqrt{17}}\end{array}\right.$,
$\therefore C$的方程为${x}^{2}-\dfrac{{y}^{2}}{16}=1(x\geqslant 1)$;
(2)(法一)设$T(\dfrac{1}{2},m)$,直线$AB$的参数方程为$\left\{\begin{array}{l}{x=\dfrac{1}{2}+t\cos \theta }\\ {y=m+t\sin \theta }\end{array}\right.$,
将其代入$C$的方程并整理可得,$(16\cos ^{2}\theta -\sin ^{2}\theta )t^{2}+(16\cos \theta -2m\sin \theta )t-(m^{2}+12)=0$,
由参数的几何意义可知,$\vert TA\vert =t_{1}$,$\vert TB\vert =t_{2}$,则${t}_{1}{t}_{2}=\dfrac{{m}^{2}+12}{si{n}^{2}\theta -16co{s}^{2}\theta }=\dfrac{{m}^{2}+12}{1-17co{s}^{2}\theta }$,
设直线$PQ$的参数方程为$\left\{\begin{array}{l}{x=\dfrac{1}{2}+\lambda \cos \beta }\\ {y=m+\lambda \sin \beta }\end{array}\right.$,$\vert TP\vert =\lambda _{1}$,$\vert TQ\vert =\lambda _{2}$,同理可得,${\lambda }_{1}{\lambda }_{2}=\dfrac{{m}^{2}+12}{1-17co{s}^{2}\beta }$,
依题意,$\dfrac{{m}^{2}+12}{1-17co{s}^{2}\theta }=\dfrac{{m}^{2}+12}{1-17co{s}^{2}\beta }$,则$\cos ^{2}\theta =\cos ^{2}\beta$,
又$\theta \ne \beta$,故$\cos \theta =-\cos \beta$,则$\cos \theta +\cos \beta =0$,即直线$AB$的斜率与直线$PQ$的斜率之和为0.
(法二)设$T(\dfrac{1}{2},t)$,直线$AB$的方程为$y={k}_{1}(x-\dfrac{1}{2})+t$,$A(x_{1}$,$y_{1})$,$B(x_{2}$,$y_{2})$,设$\dfrac{1}{2}<{x}_{1}<{x}_{2}$,
将直线$AB$方程代入$C$的方程化简并整理可得,$(16-{{k}_{1}}^{2}){x}^{2}-({{k}_{1}}^{2}-2t{k}_{1})x-\dfrac{1}{4}{{k}_{1}}^{2}+{k}_{1}t-{t}^{2}-16=0$,
由韦达定理有,${x}_{1}+{x}_{2}=\dfrac{{{k}_{1}}^{2}-2{k}_{1}t}{{{k}_{1}}^{2}-16},{x}_{1}{x}_{2}=\dfrac{-\dfrac{1}{4}{{k}_{1}}^{2}+{k}_{1}t-{t}^{2}-16}{{{16-k}_{1}}^{2}}$,
又由$A({x}_{1},{k}_{1}{x}_{1}-\dfrac{1}{2}{k}_{1}+t),T(\dfrac{1}{2},t)$可得$\vert AT\vert =\sqrt{1+{{k}_{1}}^{2}}({x}_{1}-\dfrac{1}{2})$,
同理可得$\vert BT\vert =\sqrt{1+{{k}_{1}}^{2}}({x}_{2}-\dfrac{1}{2})$,
$\therefore$$\vert AT\vert \vert BT\vert =(1+{{k}_{1}}^{2})({x}_{1}-\dfrac{1}{2})({x}_{2}-\dfrac{1}{2})=\dfrac{(1+{{k}_{1}}^{2})({t}^{2}+12)}{{{k}_{1}}^{2}-16}$,
设直线$PQ$的方程为$y={k}_{2}(x-\dfrac{1}{2})+t,P({x}_{3},{y}_{3}),Q({x}_{4},{y}_{4})$,设$\dfrac{1}{2}<{x}_{3}<{x}_{4}$,
同理可得$\vert PT\vert \vert QT\vert =\dfrac{(1+{{k}_{2}}^{2})({t}^{2}+12)}{{{k}_{2}}^{2}-16}$,
又$\vert AT\vert \vert BT\vert =\vert PT\vert \vert QT\vert$,则$\dfrac{1+{{k}_{1}}^{2}}{{{k}_{1}}^{2}-16}=\dfrac{1+{{k}_{2}}^{2}}{{{k}_{2}}^{2}-16}$,化简可得${{k}_{1}}^{2}={{k}_{2}}^{2}$,
又$k_{1}\ne k_{2}$,则$k_{1}=-k_{2}$,即$k_{1}+k_{2}=0$,即直线$AB$的斜率与直线$PQ$的斜率之和为0.
点评:本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.

http://x.91apu.com//shuxue/gkt/2021/2021xgk1/2021-06-14/33155.html