(12分)记$\Delta ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$.已知$b^{2}=ac$,点$D$在边$AC$上,$BD\sin \angle ABC=a\sin C$. (1)证明:$BD=b$; (2)若$AD=2DC$,求$\cos \angle ABC$. 分析:(1)利用正弦定理求解; (2)要能找到隐含条件:$\angle BDA$和$\angle BDC$互补,从而列出等式关系求解. 解:(1)证明:由正弦定理知,$\dfrac{b}{\sin \angle ABC}=\dfrac{c}{\sin \angle ACB}=2R$, $\therefore b=2R\sin \angle ABC$,$c=2R\sin \angle ACB$, $\because b^{2}=ac$, $\therefore b\cdot 2R\sin \angle ABC=a\cdot 2R\sin \angle ACB$, 即$b\sin \angle ABC=a\sin C$, $\because BD\sin \angle ABC=a\sin C$. $\therefore BD=b$; (2)由(1)知$BD=b$, $\because AD=2DC$, $\therefore AD=\dfrac{2}{3}b$,$DC=\dfrac{1}{3}b$, 在$\Delta ABD$中,由余弦定理知,$\cos \angle BDA=\dfrac{B{D}^{2}+A{D}^{2}-A{B}^{2}}{2BD\cdot AD}=\dfrac{{b}^{2}+(\dfrac{2}{3}{b)}^{2}-{c}^{2}}{2b\cdot \dfrac{2}{3}b}=\dfrac{13{b}^{2}-9{c}^{2}}{12{b}^{2}}$, 在$\Delta CBD$中,由余弦定理知,$\cos \angle BDC=\dfrac{B{D}^{2}+C{D}^{2}-B{C}^{2}}{2BD\cdot CD}=\dfrac{{b}^{2}+(\dfrac{1}{3}b)^{2}-{a}^{2}}{2b\cdot \dfrac{1}{3}b}=\dfrac{10{b}^{2}-9{a}^{2}}{6{b}^{2}}$, $\because \angle BDA+\angle BDC=\pi$, $\therefore \cos \angle BDA+\cos \angle BDC=0$, 即$\dfrac{13{b}^{2}-9{c}^{2}}{12{b}^{2}}+\dfrac{10{b}^{2}-9{a}^{2}}{6{b}^{2}}=0$, 得$11b^{2}=3c^{2}+6a^{2}$, $\because b^{2}=ac$, $\therefore 3c^{2}-11ac+6a^{2}=0$, $\therefore c=3a$或$c=\dfrac{2}{3}a$, 在$\Delta ABC$中,由余弦定理知,$\cos \angle ABC=\dfrac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\dfrac{{a}^{2}+{c}^{2}-ac}{2ac}$, 当$c=3a$时,$\cos \angle ABC=\dfrac{7}{6}>1$(舍$)$; 当$c=\dfrac{2}{3}a$时,$\cos \angle ABC=\dfrac{7}{12}$; 综上所述,$\cos \angle ABC=\dfrac{7}{12}$. 点评:本题考查正弦定理及余弦定理的内容,是一道好题.
|