2021年高考数学新高考Ⅰ-17 |
|
2021-06-14 21:59:18 |
|
(10分)已知数列$\{a_{n}\}$满足$a_{1}=1$,${{a}_{n+1}}=\left\{ \begin{array}{*{35}{l}} {{a}_{n}}+1,n, \\ {{a}_{n}}+2,n\cdot \\ \end{array} \right.$ (1)记$b_{n}=a_{2n}$,写出$b_{1}$,$b_{2}$,并求数列$\{b_{n}\}$的通项公式; (2)求$\{a_{n}\}$的前20项和. 分析:(1)由数列$\{a_{n}\}$的通项公式可求得$a_{2}$,$a_{4}$,从而可得求得$b_{1}$,$b_{2}$,由$b_{n}-b_{n-1}=3$可得数列$\{b_{n}\}$是等差数列,从而可求得数列$\{b_{n}\}$的通项公式; (2)由数列$\{a_{n}\}$的通项公式可得数列$\{a_{n}\}$的奇数项和偶数项分别为等差数列,求解即可. 解:(1)因为$a_{1}=1$,${{a}_{n+1}}=\left\{ \begin{array}{*{35}{l}} {{a}_{n}}+1,n \\ {{a}_{n}}+2,n \\ \end{array} \right.$, 所以$a_{2}=a_{1}+1=2$,$a_{3}=a_{2}+2=4$,$a_{4}=a_{3}+1=5$, 所以$b_{1}=a_{2}=2$,$b_{2}=a_{4}=5$, $b_{n}-b_{n-1}=a_{2n}-a_{2n-2}=a_{2n}-a_{2n-1}+a_{2n-1}-a_{2n-2}=1+2=3$, 所以数列$\{b_{n}\}$是以$b_{1}=2$为首项,以3为公差的等差数列, 所以$b_{n}=2+3(n-1)=3n-1$. (2)由(1)可得$a_{2n}=3n-1$,$n\in N*$, 则$a_{2n-1}=a_{2n-2}+2=3(n-1)-1+2=3n-2$,$n\geqslant 2$, 当$n=1$时,$a_{1}=1$也适合上式, 所以$a_{2n-1}=3n-2$,$n\in N*$, 所以数列$\{a_{n}\}$的奇数项和偶数项分别为等差数列, 则$\{a_{n}\}$的前20项和为$a_{1}+a_{2}+...+a_{20}=(a_{1}+a_{3}+\ldots +a_{19})+(a_{2}+a_{4}+\ldots +a_{20})=10+\dfrac{10\times 9}{2}\times 3+10\times 2+\dfrac{10\times 9}{2}\times 3=300$. 点评:本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021xgk1/2021-06-14/33151.html |