2021年高考数学新高考Ⅰ-10 |
|
2021-06-14 21:41:55 |
|
(5分)已知$O$为坐标原点,点$P_{1}(\cos \alpha ,\sin \alpha )$,$P_{2}(\cos \beta ,-\sin \beta )$,$P_{3}(\cos (\alpha +\beta )$,$\sin (\alpha +\beta ))$,$A(1,0)$,则( ) A.$\vert \overrightarrow{O{P}_{1}}\vert =\vert \overrightarrow{O{P}_{2}}\vert$ B.$\vert \overrightarrow{A{P}_{1}}\vert =\vert \overrightarrow{A{P}_{2}}\vert$ C.$\overrightarrow{OA}\cdot \overrightarrow{O{P}_{3}}=\overrightarrow{O{P}_{1}}\cdot \overrightarrow{O{P}_{2}}$ D.$\overrightarrow{OA}\cdot \overrightarrow{O{P}_{1}}=\overrightarrow{O{P}_{2}}\cdot \overrightarrow{O{P}_{3}}$ 分析:由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案. 解:$\because P_{1}(\cos \alpha ,\sin \alpha )$,$P_{2}(\cos \beta ,-\sin \beta )$,$P_{3}(\cos (\alpha +\beta )$,$\sin (\alpha +\beta ))$,$A(1,0)$, $\therefore$$\overrightarrow{O{P}_{1}}=(\cos \alpha ,\sin \alpha )$,$\overrightarrow{O{P}_{2}}=(\cos \beta ,-\sin \beta )$, $\overrightarrow{O{P}_{3}}=(\cos (\alpha +\beta )$,$\sin (\alpha +\beta ))$,$\overrightarrow{OA}=(1,0)$, $\overrightarrow{A{P}_{1}}=(\cos \alpha -1,\sin \alpha )$,$\overrightarrow{A{P}_{2}}=(\cos \beta -1,-\sin \beta )$, 则$\vert \overrightarrow{O{P}_{1}}\vert =\sqrt{co{s}^{2}\alpha +si{n}^{2}\alpha }=1$,$\vert \overrightarrow{O{P}_{2}}\vert =\sqrt{co{s}^{2}\beta +(-\sin \beta )^{2}}=1$,则$\vert \overrightarrow{O{P}_{1}}\vert =\vert \overrightarrow{O{P}_{2}}\vert$,故$A$正确; $\vert \overrightarrow{A{P}_{1}}\vert =\sqrt{(\cos \alpha -1)^{2}+si{n}^{2}\alpha }=\sqrt{co{s}^{2}\alpha +si{n}^{2}\alpha -2\cos \alpha +1}=\sqrt{2-2\cos \alpha }$, $\vert \overrightarrow{A{P}_{2}}\vert =\sqrt{(\cos \beta -1)^{2}+(-\sin \beta )^{2}}=\sqrt{co{s}^{2}\beta +si{n}^{2}\beta -2\cos \beta +1}=\sqrt{2-2\cos \beta }$, $\vert \overrightarrow{A{P}_{1}}\vert \ne \vert \overrightarrow{A{P}_{2}}\vert$,故$B$错误; $\overrightarrow{OA}\cdot \overrightarrow{O{P}_{3}}=1\times \cos (\alpha +\beta )+0\times \sin (\alpha +\beta )=\cos (\alpha +\beta )$, $\overline{O{P}_{1}}\cdot \overrightarrow{O{P}_{2}}=\cos \alpha \cos \beta -\sin \alpha \sin \beta =\cos (\alpha +\beta )$, $\therefore$$\overrightarrow{OA}\cdot \overrightarrow{O{P}_{3}}=\overrightarrow{O{P}_{1}}\cdot \overrightarrow{O{P}_{2}}$,故$C$正确; $\overrightarrow{OA}\cdot \overrightarrow{O{P}_{1}}=1\times \cos \alpha +0\times \sin \alpha =\cos \alpha$, $\overrightarrow{O{P}_{2}}\cdot \overrightarrow{O{P}_{3}}=\cos \beta \cos (\alpha +\beta )-\sin \beta \sin (\alpha +\beta )=\cos [\beta +(\alpha +\beta )]=\cos (\alpha +2\beta )$, $\therefore$$\overrightarrow{OA}\cdot \overrightarrow{O{P}_{1}}\ne \overrightarrow{O{P}_{2}}\cdot \overrightarrow{O{P}_{3}}$,故$D$错误. 故选:$AC$. 点评:本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,考查运算求解能力,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021xgk1/2021-06-14/33144.html |