91学 首页 > 数学 > 高考题 > 2020 > 2020年全国1理数 > 正文 返回 打印

2020年高考数学全国卷Ⅰ--理20

  2020-10-12 21:38:14  

(2020新课标Ⅰ卷计算题)

已知分别为椭圆)的左、右顶点,的上顶点,为直线上的动点,的另一交点为的另一交点为

(1)求的方程。

(2)证明:直线过定点。

【出处】
2020年普通高等学校招生全国统一考试(新课标Ⅰ卷):理数第20题
【答案】

(1)由题意知

所以

又因为,所以

得到,所以的方程为

(2)设,则的方程为

联立

由韦达定理可得

因为

所以

将其代入直线中,得到

所以

同理可得

由对称性可知过的定点在轴上,设

由题意得,所以

所以

解得

所以直线过定点

【解析】

本题主要考查直线与圆锥曲线和圆锥曲线。

(1)由题意知,根据向量条件可得,所以的方程为

(2)求出的方程为,联立的方程与椭圆的方程可求得,同理可得。由于点的取法可以关于轴对称,所以过的定点在轴上。设,则,所以,所以得到解得,所以直线过定点

【考点】
椭圆的概念、性质与基本量的计算直线与圆锥曲线直线与圆锥曲线的恒成立问题圆锥曲线


http://x.91apu.com//shuxue/gkt/2020/2020qg1/2020-10-12/32863.html