当时,不等式恒成立,则实数的取值范围( )。
本题主要考查分离变量及导数。
当时,不等式即,其中,,记,,所以在上单调递减,在上单调递增,所以在上的最小值为,即;
当时,不等式成立;
当时,不等式即,其中,,同上可知,在上单调递减,所以在上的最大值为,即。
综上可知。
故本题正确答案为C。
易错项分析:不等式的恒成立问题,易错点是考生不会将此类问题转化为求函数的最值问题,通过分离参数及构造新函数求导,确定新函数的单调性和最值,本题还需要根据的取值范围正确进行分类讨论,最后总结得出结论。
本题易错项为B。根据题意可把区间分为正、负、三种情况进行讨论,注意正负号以及求导过程的计算。