Processing math: 100%
91学 首页 > 数学 > 高中题型 > 高考数学必做百题(理) > 正文 返回 打印

高考数学必做百题第38题(理科2017版)

  2016-10-04 15:43:49  

038.已知数列{an}是公差为2的等差数列,它的前n项和为Sn,且a1+1,a3+1,a7+1成等比数列。
(1)求{an}的通项公式;
(2)求数列{1Sn}的前n项和Tn
(3)若bn=3n1an,求数列{bn}的前n项和Wn
解:(1)∵数列{an}是公差为2的等差数列,
则设an=a1+2(n1)
a1+1,a3+1,a7+1成等比数列,
(a3+1)2=(a1+1)(a7+1)
(a1+5)2=(a1+1)(a1+13),解得a1=3
an=a1+2(n1)=2n+1
(2)∵an=2n+1
Sn=n(a1+an)2=n(n+2)
1Sn=12(1n1n+2)
Tn=1S1+1S2+1S3++1Sn
=12(113+1214+1315++1n1n+2)
=12(1+121n+11n+2)
=342n+32(n+1)(n+2)
(3)∵an=2n+1
bn=3n1an=(2n+1)3n1
Wn=3+53+732++(2n1)3n2+(2n+1)3n1
3Wn=33+532+733++(2n1)3n1+(2n+1)3n
两式相减得
2Wn=3+23+232++23n1(2n+1)3n
=3+2(3+32++3n1)(2n+1)3n
=3+2×3(13n1)13(2n+1)3n=2n3n
Wn=n3n
∴数列{bn}的前n项和Wn=n3n


http://x.91apu.com//shuxue/gztx/100ti2li/25726.html