036.如图所示,在山顶铁塔上$B$处测得地面上一点$A$的俯角为$\alpha$,在塔底$C$处测得$A$处的俯角为$\beta$.已知铁塔$BC$部分的高为$h$,求山高$CD$.
解:在$\vartriangle ABC$中,
$∠BCA=90°+\beta$,
$∠ABC=90°-\alpha$,
$∠BAC=\alpha-\beta,∠CAD=\beta$.
由正弦定理得:
$\dfrac{AC}{\sin \angle ABC}=\dfrac{BC}{\sin \angle BAC}$,
即$\dfrac{AC}{\sin (90{}^\circ -\alpha )}=\dfrac{BC}{\sin (\alpha -\beta )}$,
∴$AC=\dfrac{BC\cos \alpha }{\sin (\alpha -\beta )}=\dfrac{h\cos \alpha }{\sin (\alpha -\beta )}$.
在$Rt\vartriangle ACD$中,
$CD=AC\sin \angle CAD=AC\sin \beta =\dfrac{h\cos \alpha \sin \beta }{\sin (\alpha -\beta )}$.
∴所求山高$CD$为$\dfrac{h\cos \alpha \sin \beta }{\sin (\alpha -\beta )}$.