考点:和差角公式,倍角公式,三角函数值求角。
031.(1)已知$\alpha ,\beta \in \left( 0,\dfrac{\pi }{2} \right)$,满足
$\tan \left( \alpha +\beta \right)=4\tan \beta $,求$\tan \alpha $的最大值;
(2)已知角$\alpha \in (\dfrac{\pi }{4},\dfrac{3\pi }{4})$, $\beta \in (0,\dfrac{\pi }{4})$,
$\tan (\dfrac{\pi }{4}-\alpha )=-\dfrac{4}{3}$, $\sin (\dfrac{3\pi }{4}+\beta )=\dfrac{5}{13}$,
求$\sin (\alpha +\beta )$的值。
解:(1)∵$\tan \left( \alpha +\beta \right)=4\tan \beta $,
∴$\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }=4\tan \beta $
解得$\tan \alpha =\dfrac{3\tan \beta }{1+4{{\tan }^{2}}\beta }$。
∵$\beta \in \left( 0,\dfrac{\pi }{2} \right)$,∴$\tan \beta >0$,
∴$\tan \alpha =\dfrac{3}{\dfrac{1}{\tan \beta }+4\tan \beta }$
$\le \dfrac{3}{2\sqrt{\dfrac{1}{\tan \beta }\cdot 4\tan \beta }}=\dfrac{3}{4}$,
当且仅当$\dfrac{1}{\tan \beta }=4\tan \beta $,即$\tan \beta =\dfrac{1}{2}$时取等号,
∴$\tan \alpha $的最大值是$\dfrac{3}{4}$。
(2)∵$\dfrac{3\pi }{4}+\beta -\left( \dfrac{\pi }{4}-\alpha \right)=\dfrac{\pi }{2}+\left( \alpha +\beta \right)$,
∴ $\sin \left( \alpha +\beta \right)=-\cos \left[ \dfrac{\pi }{2}+\left( \alpha +\beta \right) \right]$
$=-\cos \left[ \left( \dfrac{3\pi }{4}+\beta \right)-\left( \dfrac{\pi }{4}-\alpha \right) \right]$
$=-\cos \left( \dfrac{3\pi }{4}+\beta \right)\cos \left( \dfrac{\pi }{4}-\alpha \right)-\sin \left( \dfrac{3\pi }{4}+\beta \right)\sin \left( \dfrac{\pi }{4}-\alpha \right)$
∵$\alpha \in (\dfrac{\pi }{4},\dfrac{3\pi }{4})$ $\Rightarrow -\dfrac{3\pi }{4}<-\alpha <-\dfrac{\pi }{4}$
$\Rightarrow $ $-\dfrac{\pi }{2}<\dfrac{\pi }{4}-\alpha <0$,
∴$\cos \left( \dfrac{\pi }{4}-\alpha \right)=\dfrac{1}{\sqrt{1+{{\tan }^{2}}\left( \dfrac{\pi }{4}-\alpha \right)}}=\dfrac{3}{5}$,
∴ $\sin \left( \dfrac{\pi }{4}-\alpha \right)$
=$-\sqrt{1-{{\cos }^{2}}(\dfrac{\pi }{4}-\alpha )}$=$-\sqrt{1-{{(\dfrac{3}{5})}^{2}}}$=$-\dfrac{4}{5}$,
∵$0<\beta <\dfrac{\pi }{4}$$\Rightarrow $$\dfrac{3\pi }{4}<\dfrac{3\pi }{4}+\beta <\pi $,
∴$\cos \left( \dfrac{3\pi }{4}+\beta \right)$$=-\sqrt{1-{{\sin }^{2}}(\dfrac{3\pi }{4}-\beta )}$
$=-\sqrt{1-{{(\dfrac{5}{13})}^{2}}}=-\dfrac{12}{13}$。
∴$\sin \left( \alpha +\beta \right)$$=-\left( -\dfrac{12}{13} \right)\times \dfrac{3}{5}-\dfrac{5}{13}\times \left( -\dfrac{4}{5} \right)=\dfrac{56}{65}$。