考点:倍角公式,诱导公式。
030. (1)设$f\left( x \right)=\dfrac{1+\cos 2x}{2\sin \left( \dfrac{\pi }{2}-x \right)}+\sin x+{{a}^{2}}\sin \left( x+\dfrac{\pi }{4} \right)$
的最大值为$\sqrt{2}+3$,求常数$a$的值;
(2)已知$\alpha ,\beta \in \left( 0,\pi \right)$,且$\tan \left( \alpha -\beta \right)=\dfrac{1}{2}$,
$\tan \beta =-\dfrac{1}{7}$,求$2\alpha -\beta $的值。
解:(1)
$\begin{align} & f(x)=\dfrac{1+2{{\cos }^{2}}x-1}{2\cos x}+\sin x+{{a}^{2}}\sin (x+\dfrac{\pi }{4}) \\ & =\cos x+\sin x+{{a}^{2}}\sin (x+\dfrac{\pi }{4}) \\ & =\sqrt{2}\sin (x+\dfrac{\pi }{4})+{{a}^{2}}\sin (x+\dfrac{\pi }{4}) \\ & =(\sqrt{2}+{{a}^{2}})\sin (x+\dfrac{\pi }{4}) \\ \end{align}$
∵$f\left( x \right)$最大值为$\sqrt{2}+3$,
∴$\sqrt{2}+{{a}^{2}}=\sqrt{2}+3$,解得$a=\pm \sqrt{3}$。
考点:倍角公式,辅助角公式,正弦函数性质。
(2)∵$\tan \alpha =\tan \left[ \left( \alpha -\beta \right)+\beta \right]$
$=\dfrac{\tan \left( \alpha -\beta \right)+\tan \beta }{1-\tan \left( \alpha -\beta \right)\tan \beta }$
$=\dfrac{\dfrac{1}{2}-\dfrac{1}{7}}{1+\dfrac{1}{2}\times \dfrac{1}{7}}=\dfrac{1}{3}$,
∴$\tan \alpha =\dfrac{1}{3}>0$。∴$0<\alpha <\dfrac{\pi }{2}$,
又∵$\tan 2\alpha =\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }=\dfrac{2\times \dfrac{1}{3}}{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{3}{4}>0$,
∴$0<2\alpha <\dfrac{\pi }{2}$,
∴$\tan \left( 2\alpha -\beta \right)=\dfrac{\tan 2\alpha -\tan \beta }{1+\tan 2\alpha \tan \beta }=\dfrac{\dfrac{3}{4}+\dfrac{1}{7}}{1-\dfrac{3}{4}\times \dfrac{1}{7}}=1$。∵$\tan \beta =-\dfrac{1}{7}<0$,∴$\dfrac{\pi }{2}<\beta <\pi $,
于是$-\pi <2\alpha -\beta <0$,
∴$2\alpha -\beta =-\dfrac{3\pi }{4}$。