011.(1)设$i$是虚数单位,$\overline{z}$是复数$z$的共轭复数,若$z\cdot \overline{z}i+2=2z$,则$z$=( )
$A$.$1+i$ $B$.$1-i$
$C$.$-1+i$ $D$.$-1-i$
(2)$\cfrac{{{\left( \sqrt{2}+\sqrt{2}i \right)}^{3}}\left( 4+5i \right)}{\left( 5-4i \right)\left( 1-i \right)}=$________。
解:(1)设$z=a+bi$$\left( a,b\in R \right)$,则
$z\cdot \overline{z}i+2=2z$等价于
$\left( a+bi \right)\left( a-bi \right)i=2\left( a+bi \right)$等价于
$2+\left( {{a}^{2}}+{{b}^{2}} \right)i=2a+2bi$等价于
$\left\{ \begin{matrix} 2=2a\begin{matrix} {} & {} \\\end{matrix} \\ {{a}^{2}}+{{b}^{2}}=2b \\\end{matrix} \right.$,解得$\left\{ \begin{matrix} a=1 \\ b=1 \\\end{matrix} \right.$。
即$z=1+i$。故选$A$。
(2)$\cfrac{{{\left( \sqrt{2}+\sqrt{2}i \right)}^{3}}\left( 4+5i \right)}{\left( 5-4i \right)\left( 1-i \right)}$
$=\cfrac{2\sqrt{2}{{\left( 1+i \right)}^{3}}\left( 5-4i \right)i}{\left( 5-4i \right)\left( 1-i \right)}$
$=\cfrac{2\sqrt{2}{{\left( 1+i \right)}^{4}}i}{2}$$=\sqrt{2}{{\left( 1+i \right)}^{4}}i$
$=\sqrt{2}{{\left( 2i \right)}^{2}}i$$=-4\sqrt{2}i$。
∴$\cfrac{{{\left( \sqrt{2}+\sqrt{2}i \right)}^{3}}\left( 4+5i \right)}{\left( 5-4i \right)\left( 1-i \right)}=-4\sqrt{2}i$。