009.已知$\left| \overrightarrow{a} \right|=4,\left| \overrightarrow{b} \right|=3$,$(2\overrightarrow{a}-3\overrightarrow{b})\cdot (2\overrightarrow{a}+\overrightarrow{b})=61$,
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$\theta $;
(2)求$\left| \overrightarrow{a}+\overrightarrow{b} \right|$;
(3)若$\overrightarrow{c}=(1,2)$,且$\overrightarrow{a}\bot \overrightarrow{c}$,求$\overrightarrow{a}$。
解:(1)∵$(2\overrightarrow{a}-3\overrightarrow{b})\cdot (2\overrightarrow{a}+\overrightarrow{b})$
$\begin{align} & =4{{\overrightarrow{a}}^{2}}-4\overrightarrow{a}\cdot \overrightarrow{b}-3{{\overrightarrow{b}}^{2}} \\ & =4\times 16-4\times 4\times 3\times \cos \theta -3\times 9 \\ \end{align}$
=61,
∴ $\cos \theta $=$-\frac{1}{2}$,
∴ $\theta ={{120}^{\circ }}$.
(2)${{\left| \overrightarrow{a}+\overrightarrow{b} \right|}^{2}}={{\left( \overrightarrow{a}+\ \overrightarrow{b} \right)}^{2}}={{\left| \overrightarrow{a} \right|}^{2}}+2\overrightarrow{a}\cdot \overrightarrow{b}+{{\left| \overrightarrow{b} \right|}^{2}}$
=42 +2×(-6)+32 =13,
∴$\left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{13}$。
(3)设$\overrightarrow{a}=(x,y)$,∵$\overrightarrow{c}=(1,2)$,且$\overrightarrow{a}\bot \overrightarrow{c}$,
∴$\left( 1,2 \right)\cdot \left( x,y \right)=0$,即$x+2y=0$。
由$\left\{ \begin{align} & {{x}^{2}}+{{y}^{2}}={{4}^{2}} \\ & x+2y=0 \\ \end{align} \right.$,得$5{{y}^{2}}=16$,
解得$\left\{ \begin{align} & x=-\frac{8\sqrt{5}}{5} \\ & y=\frac{4\sqrt{5}}{5} \\ \end{align} \right.$或$\left\{ \begin{align} & x=\frac{8\sqrt{5}}{5} \\ & y=-\frac{4\sqrt{5}}{5} \\ \end{align} \right.$。
∴ $\overrightarrow{a}=(-\frac{8\sqrt{5}}{5},\frac{4\sqrt{5}}{5})$或$(\frac{8\sqrt{5}}{5},-\frac{4\sqrt{5}}{5})$。