三、解答题
(21)(本小题满分14分)
设数列、、满足:,(n=1,2,3,…),
证明为等差数列的充分必要条件是为等差数列且(n=1,2,3,…)
本小题主要考查等差数列、充要条件等基础知识,考查综合运用数学知识
分析问题和解决问题的能力,满分14分.
证明:必要性.设{an}是公差为d1的等差数列,则
bn+1-bn=(an+1-an+3)-(an-an+2)=(an+1-an)-(an+3-an+2)=d1-d1=0,
所以bn≤bn+1(n=1,2,3,…)成立,
又cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2)
=d1+2d1+3d1=6d1(常数)(n=1,2,3,…),
所以数列{cn}为等差数列.
充分性.设数列{cn}是公差为d2的等差数列,且bn≤bn+1(n=1,2,3,…).
证法一:
∵cn=an+2an+1+3an+2, ①
∴cn+2=an+2+2an+3+3an+4. ②
①-②得cn-cn+2=(an-an+2)+2(an+1-an+3)+3(an+2-an+4)
=bn+2bn+1+3bn+2.
∵cn-cn+2=(cn-cn+1)+(cn+1-cn+2)=-2d2,
∴bn+2bn+1+3bn+2=-2d2, ③
从而有
bn+1+2bn+2+3bn+3=-2d2. ④
④-③得
(bn+1-bn)+2(bn+2-bn+1)+3(bn+3-bn+2)=0. ⑤
∵bn+1-bn≥0,bn+2-bn+1≥0,bn+3-bn+2≥0,
∴由⑤得bn+1-bn=0(n=1,2,3,…).
由此不妨设bn=d3(n=1,2,3,…),则an-an+2=d3(常数).
由此cn=an+2an+1+3an+2=4an+2an+1-3d3,
从而cn+1=4an+1+2an+2-3d3=4an+1+2an-5d3.
两式相减得cn+1-cn=2(an+1-an)-2d3,
因此an+1-an=(cn+1-cn)+d3=d2+d3(常数)(n=1,2,3,…),
所以数列{an}是等差数列,
证法二:
令An=an+1-an,由bn≤bn+1知an-an+2≤an+1-an+3,
从而an+1-an≥an+3-an+2,即An≥An+2(n=1,2,3,…).
由cn=an+2an+1+3an+2,cn+1=an+1+2an+2+3an+3得
cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2),即
An+2An+1+3An+2=d2. ⑥
由此得
An+2+2An+3+3An+4=d2. ⑦
⑥-⑦得
(An-An+2)+2(An+1-An+3)+3(An+2-An+4)=0. ⑧
因为An-An+2≥0,An+1-An+3≥0,An+2-An+4≥0,
所以由⑧得An-An+2=0(n=1,2,3,…).
于是由⑥得
4An+2An+1=An+2An+1+3An+2=d2, ⑨
从而
2An+4An+1=4An+1+2An+2=d2. ⑩
由⑨和⑩得4An+2An+1=2An+4An+1,故An+1=An,即
an+2-an+1=an+1-an(n=1,2,3,…),
所以数列{an}是等差数列.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。